If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-4400=0
a = 2; b = 0; c = -4400;
Δ = b2-4ac
Δ = 02-4·2·(-4400)
Δ = 35200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{35200}=\sqrt{1600*22}=\sqrt{1600}*\sqrt{22}=40\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{22}}{2*2}=\frac{0-40\sqrt{22}}{4} =-\frac{40\sqrt{22}}{4} =-10\sqrt{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{22}}{2*2}=\frac{0+40\sqrt{22}}{4} =\frac{40\sqrt{22}}{4} =10\sqrt{22} $
| (2x-4)-3=4x+3 | | |2x+4|=2 | | Y=600+4x | | -11/5=2+n | | 3/4x-11=-13 | | 51.00=6h+5 | | 9x-8x+2=5 | | 2y=6+1 | | 9^5/2=y | | 7(2+1/x)=21 | | 3(6x-5)=3(6x-5)=x | | 4m*m=5 | | 30+10r=1r | | 3m*6m+4m*m=50 | | g^2+10g+7=0 | | 17^-x+6=6^9x | | 7=1/8h=-2 | | 2080x+(314.68*1.5x)=51353.13 | | 3=2t+-1 | | 4x+46=8 | | m*m*m=27 | | x-(2x+3)=2x+6 | | y^2+21y=100 | | 43=πr^2(5) | | 27x-40=-25+25 | | 4x+1/3=5 | | -9/e=-6 | | 9x-17=17+9x | | 3/x-13=10x | | d=3^2-4(2+6) | | ∠B=4x+38∘ | | 17x8x-9=76-40 |